Logo

IEEE C37.24-2003

Current Revision

IEEE Guide for Evaluating the Effect of Solar Radiation on Outdoor Metal-Enclosed Switchgear

$126.00


Sub Total (1 Item(s))

$ 0.00

Estimated Shipping

$ 0.00

Total (Pre-Tax)

$ 0.00


Stay effortlessly up-to-date with the latest standard revisions. When new versions are released, they're automatically charged and delivered to you, ensuring seamless compliance.

Document Preview Not Available...

Revision Standard - Superseded. This guide provides information to assist in evaluating the effect of solar radiation on outdoor metal-enclosed switchgear including metal-enclosed bus and control switchboards. Specific data are given in the form of a continuous current capability factor for specific maximum monthly normal temperatures at the installation location, to adjust the continuous current capability of outdoor metal-enclosed switchgear to the solar radiation condition required. Tables of maximum monthly normal temperatures at various locations in the US and Canada are provided.
The general information in this Guide is intended to assist in evaluating the effect of solar radiation on outdoor metal-enclosed switchgear and is applicable to outdoor metal-enclosed power switchgear, control switchboards and metal-enclosed bus. Specific data are given in current temperature relationship and tabulation form for outdoor metal-enclosed low-voltage power circuit breaker switchgear, outdoor metal-clad switchgear and outdoor metal-enclosed interrupter switchgear.
Switchgear will perform satisfactorily and have a reasonable life when operated within the temperature limits estab-lished in ANSI/IEEE C37.20.1, C37.20.2, C37.20.3, C37.21 and C37.23. These standards specify the temperature rise limits above a standard (maximum) ambient temperature of 40 ?C. This is satisfactory for indoor applications where the temperature rise is due entirely to heat release (internal losses). In outdoor applications, the limiting tem-peratures result from the net effect of internal losses and external influences, principally the sun, wind and local am-bient temperatures. All of these must be considered in determining the current-carrying capacity of outdoor metal-enclosed switchgear. The magnitude of these factors will vary geographically and from season to season. The time relationship of maxi-mum circuit loads with respect to maximum ambient temperature is important. It is not practical to design switch-gear on the basis that all adverse factors reach their maxima coincident with maximum loads. If this does not occur, full current ratings may be realized. Recommendations will be made to point out the cumulative effect of these various influences.

SDO IEEE: Institute of Electrical and Electronics Engineers
Document Number C37.24
Publication Date Feb. 26, 2004
Language en - English
Page Count 30
Revision Level
Supercedes
Committee Switchgear
Publish Date Document Id Type View
Feb. 26, 2004 C37.24-2003 Revision
March 29, 1988 C37.24-1986 Revision