Logo

ASTM D6080-97(2007)

Current Reaffirmation

Standard Practice for Defining the Viscosity Characteristics of Hydraulic Fluids

$83.00

$83.00

$149.40


Sub Total (1 Item(s))

$ 0.00

Estimated Shipping

$ 0.00

Total (Pre-Tax)

$ 0.00


...

1.1 This practice covers all hydraulic fluids based either on petroleum, synthetic, or naturally-occurring base stocks. It is not intended for water-containing hydraulic fluids.

1.2 For determination of viscosities at low temperature, this practice uses millipascal·second (mPa·s) as the unit of viscosity. For reference, 1 mPa·s is equivalent to 1 centipoise (cP). For determination of viscosities at high temperature, this practice uses millimetre squared per second (mm2/s) as the unit of kinematic viscosity. For reference, 1 mm2/s is equivalent to 1 centistoke (cSt).

1.3 This practice is applicable to fluids ranging in kinematic viscosity from about 4 to 150 mm2/s as measured at a reference temperature of 40°C and to temperatures from 50 to +16°C for a fluid viscosity of 750 mPa·s.

Note 1—Fluids of lesser or greater viscosity than the range described in 1.3 are seldom used as hydraulic fluids. Any mathematical extrapolation of the system to either higher or lower viscosity grades may not be appropriate. Any need to expand the system should be evaluated on its own merit.


The purpose of this practice is to establish viscosity designations derived from viscosities measured by test methods which have a meaningful relationship to hydraulic fluid performance. This permits lubricant suppliers, lubricant users, and equipment designers to have a uniform and common basis for designating, specifying, or selecting the viscosity characteristics of hydraulic fluids.

This practice is not intended to be a replacement for Classification D 2422. Rather, it is an enhancement intended to provide a better description of the viscosity characteristics of lubricants used as hydraulic fluids.

This practice implies no evaluation of hydraulic oil quality other than its viscosity and shear stability under the conditions specified.

While it is not intended for other functional fluids, this practice may be useful in high-shear-stress applications where viscosity index (VI) improvers are used to extend the useful operating temperature range of the fluid.

This practice does not apply to other lubricants for which viscosity classification systems already exist, for example, SAE J300 for automotive engine oils and SAE J306 for axle and manual transmission lubricants.

SDO ASTM: ASTM International
Document Number D6080
Publication Date Nov. 1, 2007
Language en - English
Page Count 6
Revision Level 97(2007)
Supercedes
Committee D02.N0.10
Publish Date Document Id Type View
Oct. 1, 2018 D6080-18A Revision
June 1, 2018 D6080-18 Revision
Nov. 1, 2012 D6080-12A Revision
June 1, 2012 D6080-12 Revision
May 1, 2010 D6080-10 Revision
Jan. 1, 1997 D6080-97 Revision
Nov. 1, 2007 D6080-97R07 Reaffirmation
Dec. 10, 2002 D6080-97R02 Reaffirmation