Logo

ASTM D256-10

Historical Revision

Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics

$91.00

$91.00

$163.80


Sub Total (1 Item(s))

$ 0.00

Estimated Shipping

$ 0.00

Total (Pre-Tax)

$ 0.00


Stay effortlessly up-to-date with the latest standard revisions. When new versions are released, they're automatically charged and delivered to you, ensuring seamless compliance.

Document Preview Not Available...

1.1 These test methods cover the determination of the resistance of plastics to standardized (see Note 1) pendulum-type hammers, mounted in standardized machines, in breaking standard specimens with one pendulum swing (see Note 2). The standard tests for these test methods require specimens made with a milled notch (see Note 3). In Test Methods A, C, and D, the notch produces a stress concentration that increases the probability of a brittle, rather than a ductile, fracture. In Test Method E, the impact resistance is obtained by reversing the notched specimen 180° in the clamping vise. The results of all test methods are reported in terms of energy absorbed per unit of specimen width or per unit of cross-sectional area under the notch. (See Note 4.)

Note 1—The machines with their pendulum-type hammers have been standardized in that they must comply with certain requirements, including a fixed height of hammer fall that results in a substantially fixed velocity of the hammer at the moment of impact. However, hammers of different initial energies (produced by varying their effective weights) are recommended for use with specimens of different impact resistance. Moreover, manufacturers of the equipment are permitted to use different lengths and constructions of pendulums with possible differences in pendulum rigidities resulting. (See Section 5.) Be aware that other differences in machine design may exist. The specimens are standardized in that they are required to have one fixed length, one fixed depth, and one particular design of milled notch. The width of the specimens is permitted to vary between limits.

Note 2—Results generated using pendulums that utilize a load cell to record the impact force and thus impact energy, may not be equivalent to results that are generated using manually or digitally encoded testers that measure the energy remaining in the pendulum after impact.

Note 3—The notch in the Izod specimen serves to concentrate the stress, minimize plastic deformation, and direct the fracture to the part of the specimen behind the notch. Scatter in energy-to-break is thus reduced. However, because of differences in the elastic and viscoelastic properties of plastics, response to a given notch varies among materials. A measure of a plastic's notch sensitivity may be obtained with Test Method D by comparing the energies to break specimens having different radii at the base of the notch.

Note 4—Caution must be exercised in interpreting the results of these standard test methods. The following testing parameters may affect test results significantly:

Before proceeding with these test methods, reference should be made to the specification of the material being tested. Any test specimen preparation, conditioning, dimensions, and testing parameters covered in the materials specification shall take precedence over those mentioned in these test methods. If there is no material specification, then the default conditions apply.

The pendulum impact test indicates the energy to break standard test specimens of specified size under stipulated parameters of specimen mounting, notching, and pendulum velocity-at-impact.

The energy lost by the pendulum during the breakage of the specimen is the sum of the following:

Energy to initiate fracture of the specimen;

Energy to propagate the fracture across the specimen;

Energy to throw the free end (or ends) of the broken specimen (toss correction);

Energy to bend the specimen;

Energy to produce vibration in the pendulum arm;

Energy to produce vibration or horizontal movement of the machine frame or base;

Energy to overcome friction in the pendulum bearing and in the indicating mechanism, and to overcome windage (pendulum air drag);

Energy to indent or deform plastically the specimen at the line of impact; and

Energy to overcome the friction caused by the rubbing of the striker (or other part of the pendulum) over the face of the bent specimen.

For relatively brittle materials, for which fracture propagation energy is small in comparison with the fracture initiation energy, the indicated impact energy absorbed is, for all practical purposes, the sum of factors 5.3.1 and 5.3.3. The toss correction (see 5.3.3) may represent a very large fraction of the total energy absorbed when testing relatively dense and brittle materials. Test Method C shall be used for materials that have an Izod impact resistance of less than 27 J/m (0.5 ft·lbf/in.). (See Appendix X4 for optional units.) The toss correction obtained in Test Method C is only an approximation of the toss error, since the rotational and rectilinear velocities may not be the same during the re-toss of the specimen as for the original toss, and because stored stresses in the specimen may have been released as kinetic energy during the specimen fracture.

For tough, ductile, fiber filled, or cloth-laminated materials, the fracture propagation energy (see 5.3.2) may be large compared to the fracture initiation energy (see 5.3.1). When testing these materials, factors (see 5.3.2, 5.3.5, and 5.3.9) can become quite significant, even when the specimen is accurately machined and positioned and the machine is in good condition with adequate capacity. (See Note 7.) Bending (see 5.3.4) and indentation losses (see 5.3.8) may be appreciable when testing soft materials.

Note 7—Although the frame and base of the machine should be sufficiently rigid and massive to handle the energies of tough specimens without motion or excessive vibration, the design must ensure that the center of percussion be at the center of strike. Locating the striker precisely at the center of percussion reduces vibration of the pendulum arm when used with brittle specimens. However, some losses due to pendulum arm vibration, the amount varying with the design of the pendulum, will occur with tough specimens, even when the striker is properly positioned.

In a well-designed machine of sufficient rigidity and mass, the losses due to factors 5.3.6 and 5.3.7 should be very small. Vibrational losses (see 5.3.6) can be quite large when wide specimens of tough materials are tested in machines of insufficient mass, not securely fastened to a heavy base.

With some materials, a critical width of specimen may be found below which specimens will appear ductile, as evidenced by considerable drawing or necking down in the region behind the notch and by a relatively high-energy absorption, and above which they will appear brittle as evidenced by little or no drawing down or necking and by a relatively low-energy absorption. Since these methods permit a variation in the width of the specimens, and since the width dictates, for many materials, whether a brittle, low-energy break or a ductile, high energy break will occur, it is necessary that the width be stated in the specification covering that material and that the width be reported along with the impact resistance. In view of the preceding, one should not make comparisons between data from specimens having widths that differ by more than a few mils.

The type of failure for each specimen shall be recorded as one of the four categories listed as follows:

SDO ASTM: ASTM International
Document Number D256
Publication Date May 1, 2010
Language en - English
Page Count 20
Revision Level 10
Supercedes
Committee D20.10
Publish Date Document Id Type View
Dec. 1, 2024 D0256-24 Revision
March 15, 2023 D0256-23E01 Revision
March 15, 2023 D0256-23 Revision
May 1, 2010 D0256-10E01 Revision
May 1, 2010 D0256-10 Revision
Dec. 1, 2006 D0256-06AE01 Revision
Dec. 1, 2006 D0256-06A Revision
March 15, 2006 D0256-06 Revision
Nov. 1, 2005 D0256-05A Revision
Jan. 1, 2005 D0256-05 Revision
May 1, 2004 D0256-04 Revision
Dec. 1, 2003 D0256-03 Revision
Aug. 10, 2002 D0256-02E01 Revision
Aug. 10, 2002 D0256-02 Revision
Nov. 10, 2000 D0256-00E01 Revision
Nov. 1, 2018 D0256-10R18 Reaffirmation